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1 Getting Started with Phased Array System Toolbox™ Software

Product Description
Design and simulate phased array signal processing systems

Phased Array System Toolbox™ provides algorithms and tools for the design,
simulation, and analysis of phased array signal processing systems. These
capabilities are provided as MATLAB® functions and MATLAB System
objects. The system toolbox includes algorithms for waveform generation,
beamforming, direction of arrival estimation, target detection, and space-time
adaptive processing.

The system toolbox lets you build monostatic, bistatic, and multistatic
architectures for a variety of array geometries. You can model these
architectures on stationary or moving platforms. Array analysis and
visualization tools help you evaluate spatial, spectral, and temporal
performance. The system toolbox lets you model an end-to-end phased array
system or use individual algorithms to process acquired data.

Key Features

• Algorithms available as MATLAB functions and MATLAB System objects

• Monostatic, bistatic, and multistatic phased array system modeling

• Array analysis and 3D visualization; physical array modeling for uniform
linear arrays, uniform rectangular arrays, and arbitrary conformal arrays
on platforms with motion

• Broadband and narrowband digital beam-forming functions, including
MVDR/Capon, LCMV, time delay, Frost, time delay LCMV, and subband
phase shift

• Space-time adaptive processing algorithms, including displaced phase
center array (DPCA), adaptive DPCA, sample matrix inversion (SMI), and
angle-Doppler response visualization

• Direction of arrival algorithms, including MVDR, ESPRIT, beamscan, root
MUSIC, and monopulse

• Waveform synthesis functions for pulsed CW, linear FM, stepped FM, and
staggered PRF signals, and waveform visualization tools for ambiguity
function and matched filter response
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Product Description

• Algorithms for TVG, pulse compression, coherent and noncoherent
integration, CFAR processing, plotting ROC curves, and estimating range
and Doppler
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1 Getting Started with Phased Array System Toolbox™ Software

Limitations

In this section...

“MATLAB® Compiler™ Support” on page 1-4

“Code Generation Support” on page 1-4

MATLAB Compiler Support
Phased Array System Toolbox software does not support the MATLAB
Compiler™. You cannot compile any functionality in the toolbox.

Code Generation Support
Phased Array System Toolbox software does not support automatic generation
of C code. You cannot generate code from the functions or System objects in
the toolbox.
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Standards and Conventions

Standards and Conventions

In this section...

“Scope of Standards and Conventions” on page 1-5

“Complex-Valued Baseband Signals” on page 1-5

“Data Organization of Baseband Signals” on page 1-6

“Spatial Coordinates” on page 1-6

“Physical Quantities” on page 1-6

“Supported Data Types” on page 1-6

Scope of Standards and Conventions
Phased Array System Toolbox software uses consistent conventions with
respect to units of measure, data representations, and coordinate systems.
You must understand these conventions to use the toolbox.

Complex-Valued Baseband Signals
In phased array signal processing, it is common to shift the frequency content
of a waveform to support effective radiation and propagation in the medium.
You accomplish this task by modulating a baseband signal with nonzero
spectral magnitudes in the vicinity of zero frequency to create a bandpass
signal with nonzero spectral magnitudes centered around a carrier frequency.
Typically, the bandwidth of the baseband signal is small compared to the
carrier frequency resulting in a narrowband signal. To process returned
signals, the receiver demodulates the bandpass signal to the baseband. The
demodulation involves local oscillators both in phase and 90 degrees out of
phase with the modulating carrier frequency. This demodulation results in
in-phase (I) and quadrature (Q) baseband signals, or channels. For processing,
it is convenient to create a complex-valued baseband signal by assigning the I
channel to be the real part and the Q channel to be the imaginary part, I+jQ.

This software uses the complex-valued baseband representation to represent
both transmitted and received signals. Actual phased array systems transmit
real-valued signals and create complex-valued baseband signals only at the
receiver. However, you can use a complex-valued representation at all stages.
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1 Getting Started with Phased Array System Toolbox™ Software

Doing so enables you to accurately model the effect of system gains, losses,
and interference on the received signal samples.

Data Organization of Baseband Signals
You can use this software to efficiently implement space-time processing
of complex-valued baseband samples by organizing the data in a
three-dimensional matrix. See Radar Data Cube for an explanation of how
the software organizes space-time data.

Spatial Coordinates
Representation of position in three dimensions is a fundamental aspect of
array signal processing. This software specifies rectangular and spherical
coordinates as column vectors with respect to both global and local origins.
See “Coordinate Systems and Motion Modeling” for a detailed explanation of
the conventions.

Physical Quantities
This software uses the International System of Units (SI) almost exclusively
for measurement. In addition, there are physical constants declared and used
in calculations. See “Units of Measure and Physical Constants” on page 3-7
for a detailed explanation of the conventions.

Supported Data Types
This software supports only double-precision data types.
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2 Phased Array Systems

System Overviews

In this section...

“Phased Array System Overview” on page 2-2

“Phased Array Radar Overview” on page 2-4

Phased Array System Overview
Phased array systems use the spatial and temporal characteristics of
propagating space-time wavefields to extract information about any sources of
the wavefields. By processing data collected over a spatiotemporal aperture
using an array of sensors, you can significantly improve performance over a
single sensor in a number of areas. These areas include, but are not limited to:

• Signal detectability

• Spatial selectivity

• Source identification and localization

The following figure shows a high-level overview of a phased array system.

Source
Array

Receiver
Array

Target

Environment

Environment

Waveform

Result

Phased array systems in diverse applications, such as radar, sonar, medical
ultrasonography, medical imaging, and cellular phone communication share
many common elements including:

• Source Array — The source array transmits a waveform through an
environment. The waveform often consists of repeating pulses modulated
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System Overviews

by a carrier frequency. Depending on the application, the wave may be an
acoustic (mechanical), or electromagnetic wave. The source array is often
electronically or mechanically steered to transmit in preferred directions.

• Environment— The medium in which the waveform travels to and from
the target affects a number of system parameters including propagation
speed, absorption loss, and wave dispersion.

• Target — The target reflects a portion of the incident waveform energy
from the source array. Some percentage of the reflected energy is
backscattered in the direction of the receiver array. In some applications,
the target is the source of the waveform energy.

• Receiver Array — The receiver array collects energy from the target
representing the signal along with external and internal sources of noise.
The receiver implements algorithms to improve the signal-to-noise ratio
and extract space-time information from the signal.

At the receiver, phased array systems implement algorithms to extract
temporal and spatial information about the source, or sources of energy.
The following figure shows a high-level overview of array signal processing
algorithms common to a significant number of phased array systems.

Receiver
Array

Temporal
Processing

Spatial
Processing

Space-Time
Processing

Brief descriptions of the three categories are:

• Temporal Processing — Phased arrays often operate in poor
signal-to-noise (SNR) ratios. Employing temporal integration and
matched filtering improves the SNR. Knowing the propagation speed of
the transmitted waveform and measuring the time it takes for a pulse to
travel to and from a target allows phased array systems to estimate range.
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2 Phased Array Systems

Performing Fourier analysis on a time series of pulses enables the phased
array to extract Doppler information from moving targets.

• Spatial Processing— Combining weighted information across multiple
sensor elements with a known geometry enables phased array systems
to spatially filter incoming waveforms. Phased arrays can also estimate
the direction of arrival and the number of source waveforms incident on
the array.

• Space-Time Processing — Simultaneously analyzing both spatial
and temporal information enables phased array systems to produce
joint angle-Doppler measurements of incident waveforms. Space-time
processing enables phased array systems to distinguish moving targets
from stationary targets when the phased array is in motion.

Phased Array Radar Overview
The following figure presents an overview of a radar phased array system.
The figure expands on the high-level overview shown in “Phased Array
System Overview” on page 2-2.

transmit radiate

propagate

transmitter

collect

propagate
waveform

radiator
using
phased array

environment

target

environment

environment

receiverradar
data cube

collector
using
phased array

jammer

reflect

propagate

receive

clutter

To exploit the advantages of array processing, you must first understand how
to model and optimize the performance of each component and operation in a
phased array system. This software provides models for all the components
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of the phased array system illustrated in the preceding figure from signal
synthesis to signal analysis.

The software supports models in which the transmitter and receiver are
collocated or spatially separated. The software also supports models in which
both the targets and phased array are in motion.

Waveform Synthesis
Phased Array System Toolbox software supports the design of rectangular,
linear frequency-modulated, and linear stepped-frequency pulsed waveforms.
To create such waveforms, you use phased.RectangularWaveform,
phased.LinearFMWaveform, and phased.SteppedFMWaveform.

Physical Components and Environment Modeling
The software enables you to simulate the physical components of a phased
array system, including:

• Transmitter— You can specify the transmitter peak power, gain, and loss
factor. See phased.Transmitter for details.

• Antenna elements — You can create antenna elements with isotropic
response patterns or antenna elements with user-specified response
patterns. These response patterns can encompass the entire range of
azimuth ([-180,180] degrees) and elevation ([-90,90] degrees) angles. See
phased.IsotropicAntennaElement, phased.CosineAntennaElement, and
phased.CustomAntennaElement for details.

• Microphone elements — For acoustic applications, you
can model an omnidirectional or custom microphone
with phased.OmnidirectionalMicrophoneElement or
phased.CustomMicrophoneElement.

Phased arrays — There are System objects for three phased array
geometries:

- Uniform linear array (ULA) — phased.ULA enables you to model a
uniform linear array consisting of sensor elements with isotropic or
custom radiation patterns. You can specify the number of elements and
element spacing.
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2 Phased Array Systems

- Uniform rectangular array — phased.URA enables you to model a
uniform rectangular array of sensor elements with isotropic or custom
radiation patterns. You can specify the number of elements, element
spacing along two orthogonal axes, and lattice geometry.

- Conformal array — phased.ConformalArray enables you to model a
conformal array of sensor elements with isotropic or custom radiation
patterns. To do so, specify the antenna element positions and normal
directions.

• Radiator — You can model waveform radiation through an antenna
element, microphone, or array with the phased.Radiator object.

• Environment — You can model the propagation of an electromagnetic
(EM) wave in free space with phased.FreeSpace. You can simulate
one-way or two-way propagation of a narrowband EM signal by applying
range-dependent attenuation and time delays, or phase shifts.

• Target — You can simulate a target with a specified radar cross section
(RCS) using phased.RadarTarget. phased.RadarTarget supports both
nonfluctuating and fluctuating (random) models of the RCS. The toolbox
supports a family of random models based on the chi-square distribution
known as Swerling target models.

• Interference — You can simulate wideband interference with a
user-specified radiated power, using phased.BarrageJammer.

• Clutter — You can simulate surface clutter using
phased.ConstantGammaClutter.

• Signal collection— You can simulate far-field or near-field narrowband
and wideband signal reception from specified directions using
phased.Collector and phased.WidebandCollector.

• Receiver — phased.ReceiverPreamp enables you to simulate the gain,
loss factor, and internal noise characteristics of your receiver.

Array Signal Processing
For the processing of received data, Phased Array System Toolbox software
supports a wide-range of array signal processing algorithms. The following
figure presents a more detailed view of the general concepts discussed in
“Phased Array System Overview” on page 2-2.
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Receiver

DOA

Beamforming

Matched
Filtering

Time-varying
Gain

STAP

Coherent
Integration

Noncoherent
Integration
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Detector

Range
Detection

Pulse
Doppler

The preceding figure only presents an overview of the array signal processing
operations supported by the software rather than predetermined orders of
operation. For example, direction of arrival (DOA) estimation, beamforming,
and space-time adaptive processing (STAP) often follow operations that
improve the signal-to-noise ratio such as matched filtering. You can
implement the supported algorithms in the manner best-suited to your
application.

• Matched Filtering — You can perform matched filtering on your data
with phased.MatchedFilter. See “Matched Filtering” for examples.
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2 Phased Array Systems

• Time-varying gain — You can equalize the power level of the
incident waveform across samples from different ranges using
phased.TimeVaryingGain. This object compensates for signal power loss
due to range.

• Beamforming and direction-of-arrival (DOA) estimation — The
Phased Array System Toolbox provides a number of algorithms for
beamforming and direction of arrival estimation. See “Beamformers” and
“Direction of Arrival (DOA)” for a list of supported beamforming and DOA
algorithms. You can find example workflows for each in “Beamforming”
and Direction of Arrival (DOA) Estimation.

• Detection — A number of utility functions implement and evaluate
Neyman-Pearson detectors using both coherent and noncoherent pulse
integration.

The toolbox also provides routines for evaluating detector performance
through the construction of receiver operating characteristic curves.

To model fluctuating noise characteristics, phased.CFARDetector object
adaptively estimates the noise characteristics from the data to maintain a
constant false-alarm rate.

You can find example workflows in the “Detection” section of the User’s
Guide.

• Pulse Doppler— The Phased Array System Toolbox has utility functions
for estimating Doppler shift based on speed (speed2dop) and to estimate
speed based on the Doppler shift (dop2speed. You can implement
pulse-Doppler processing by using the spectrum estimation algorithms in
the Signal Processing Toolbox™ product on the slow-time data. See “Radar
Data Cube” on page 3-2 for an explanation of the slow-time data.

See “Doppler Shift and Pulse-Doppler Processing” for examples of Doppler
processing.

To calculate the joint angle-Doppler response of the input data, use
phased.AngleDopplerResponse.

Example workflows for computing the angle-Doppler response can be found
in “Angle-Doppler Response”.

• Space-time adaptive processing — You can implement displaced
phase center antenna techniques with phased.DPCACanceller and
phased.ADPCACanceller. phased.STAPSMIBeamformer implements an
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adaptive beamformer by calculating the beamformer weights using the
estimated space-time interference covariance matrix.

See “Space-Time Adaptive Processing (STAP)” for examples.
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3 Radar Data Cube, Units, and Physical Constants

Radar Data Cube

In this section...

“Radar Data Cube Concept” on page 3-2

“Fast Time Samples” on page 3-3

“Slow Time Samples” on page 3-4

“Spatial Sampling” on page 3-4

“Space-Time Processing” on page 3-5

“Organizing Data in the Radar Data Cube” on page 3-5

Radar Data Cube Concept
The radar data cube is a convenient way to conceptually represent space-time
processing. To construct the radar data cube, assume that preprocessing
converts the RF signals received from multiple pulses across multiple array
elements to complex-valued baseband samples. Arrange the complex-valued
baseband samples in a three-dimensional array of size M-by-N-by-L. Many
radar signal processing operations in Phased Array System Toolbox software
correspond to processing lower-dimensional subsets of the radar data cube.
The subset could be a one-dimensional subvector or a two-dimensional
submatrix.

The following figure shows the organization of the radar data cube in this
software. Subsequent sections explain each of the dimensions and which
aspect of space-time processing they represent.
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Fast Time Samples
Consider each M-by-1 subvector of the radar data cube. Each of these M-by-1
column vectors represent complex-valued baseband samples from one pulse at
one array element. Because pulse bandwidths can be on the order of a few
hundred kHz, you require high sampling rates to avoid aliasing. Such high
sampling rates lead to the designation fast time.

The fast time dimension is also referred to as the range dimension. If the
two-way range to a target from the phased array is 2R, the difference in
range, ΔR, represented by two samples acquired with sampling interval, T is:

R
cT


2
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3 Radar Data Cube, Units, and Physical Constants

Each sample in the fast time dimension represents an incremental change in
range of ΔR in range. For this reason, fast time samples are also referred to
as range bins, or range gates.

Pulse compression is an example of a signal processing operation performed
on the fast time samples.

Slow Time Samples
Consider each M-by-L submatrix of the radar data cube. In the submatrix
there are M row vectors with dimension 1-by-L. Each of these row vectors
contains complex-valued baseband samples from L different pulses
corresponding to the same range bin. There is a M-by-L matrix for each of the
N array elements. The sampling interval between the L samples is the pulse
repetition interval (PRI). Typical PRIs are much longer than the fast-time
sampling interval. Because of the long sampling intervals, samples taken
across multiple pulses are referred to as slow time.

Processing data in the slow time dimension allows you to estimate the Doppler
spectrum at a given range bin.

The Nyquist criterion applies equally to the slow-time dimension. The
reciprocal of the PRI is the pulse repetition frequency (PRF). The PRF gives
the width of the unambiguous Doppler spectrum.

Spatial Sampling
Phased arrays consist of multiple array elements. Consider each M-by-N
submatrix of the radar data cube. Each column vector consists of M fast-time
samples for a single pulse received at a single array element. The N column
vectors represent the same pulse sampled across N array elements. The
sampled data in the N column vectors is a spatial sampling of the incident
waveform. Analysis of the data across the array elements allows you to
examine the spatial frequency content of each received pulse.

It is also possible to spatially sample a wavefield by mechanically steering
a single antenna, but the more common scenario is to sample the wavefield
by multiple array elements. The Nyquist criterion for spatial sampling
dictates that array elements must not be separated by more than one-half the
wavelength of the carrier frequency.
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Beamforming is a spatial filtering operation that combines data across the
array elements to selectively enhance and suppress wavefields incident on
the array from particular directions.

Space-Time Processing
Space-time adaptive processing operates on the two-dimensional
angle-Doppler data for each range bin. Consider the M-by-N-by-L radar
data cube. Each of the M samples is data from the same range. This
range is sampled across N array elements, and L PRIs. Collapsing the
three-dimensional matrix at each range bin into N-by-L submatrices allows
the simultaneous two-dimensional analysis of angle of arrival and Doppler
frequency.

Organizing Data in the Radar Data Cube
If you have M complex-valued baseband data samples collected from L pulses
received at N sensors, you can organize your data in a format compatible
with the Phased Array System Toolbox conventions using permute. After
processing your data, you can convert back to your original data cube format
with ipermute.

Reordering the Data Cube

Assume you have a data set consisting of 200 samples per pulse for ten pulses
collected at 6 sensor elements. Assume that your data are organized as a
6-by-10-by-200 matrix. Simulate this data structure using complex-valued
white Gaussian noise samples.

OrigData = randn(6,10,200)+1j*randn(6,10,200);

The first dimension of OrigData is the number of sensors (spatial sampling),
the second dimension is the number of pulses (slow-time), and the third
dimension contains the fast-time samples. This format is not compatible with
the radar data cube conventions of the Phased Array System Toolbox.

The Phased Array System Toolbox expects the first dimension to contain the
fast-time samples, the second dimension to represent individual sensors in
the array, and the third dimension to contain the slow-time samples.
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To reorganize OrigData in a format compatible with the toolbox conventions,
enter:

NewData = permute(OrigData,[3 1 2]);

The preceding line of code moves the third dimension of OrigData to be the
first dimension of NewData. The first dimension of OrigData becomes the
second dimension of NewData and the second dimension of OrigData becomes
the third dimension of NewData. This results in NewData being organized
as fast-time samples-by-sensors-by-slow-time samples. You can now process
NewData with the Phased Array System Toolbox software.

After you process your data, you can use ipermute to return your data format
to the original structure.

Data = ipermute(NewData,[3 1 2]);
% Data is equal to OrigData
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Units of Measure and Physical Constants

In this section...

“Units of Measure” on page 3-7

“Physical Constants” on page 3-7

Units of Measure
Phased Array System Toolbox software almost exclusively uses SI base
and derived units to measure physical quantities. The software does not
provide any utilities for converting SI base or derived units to other systems
of measurement.

Angles
Angles are an exception to the use of SI base and derived units. All angles
in Phased Array System Toolbox software are specified in degrees. See
“Spherical Coordinates” for an explanation of the angles used in the software.
There are two utility functions for converting angles from radians to degrees
and degrees to radians: radtodeg and degtorad.

Decibels
To accurately model and simulate phased array systems, it is necessary to
account for gains and losses in power incurred at various stages of processing.
In Phased Array System Toolbox software, these gains and losses are specified
in decibels (dB). Signal to noise ratios (SNRs) and the receiver noise figure are
also expressed in dB. A power of P watts in dB is:

10 10log ( )P

There are two utility functions for converting between dB and power: db2pow
and pow2db, and two utility functions for converting between magnitude and
dB: db2mag and mag2db.

Physical Constants
Modeling and simulating phased array systems requires that you specify
values for a number of physical constants. For example, the distribution of
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thermal noise power per unit bandwidth depends on the Boltzmann constant.
To measure Doppler shift and range in radar, you have to specify a value
for the speed of light. The following table summarizes the three physical
constants specified in the toolbox. See physconst for additional information.

Description Value

The speed of light in a vacuum 299,792,458 meters/second. Most
commonly denoted by c.

The Boltzmann constant relating
energy to temperature. 1 38 10 23. x − joules/degree kelvin.

Most commonly denoted by k.

Mean radius of the Earth 6,137,000 meters
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Create System Objects

In this section...

“Create a System Object” on page 4-2

“Define a New System Object” on page 4-2

“Change a System Object Property” on page 4-3

“Run a System Object” on page 4-3

“Display Available System Objects” on page 4-3

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets.

Note System objects do not support sparse matrices.

Create a System Object
To use System objects, you must first create an object. For example,

H = phased.LinearFMWaveform;

Define a New System Object
You can define a System object to implement your algorithm. For information
and examples, see “Define New System Objects”.
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Change a System Object Property
In general, you should set the object properties before you use the step
method to run data through the object. To change the value of a property,
use this format,

H.SweepBandwidth = 2e5; % Set the SweepBandwidth property
H.SweepDirection = 'Down' % Set the SweepDirection property

The property values of the linear FM pulse waveform object, H, are displayed.

Run a System Object
To execute a system object, use the step method.

Y = step(H);

The output data from the step method is stored in Y, which, in this case, is a
vector of samples from the linear FM pulse waveform.

Display Available System Objects
To see a list of all the System objects for a particular package, type help
phased. To display help for specific objects, properties, or methods, see “Find
Help and Demos for System Objects” on page 4-14 .
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Set Up System Objects

In this section...

“Create a New System Object” on page 4-4

“Retrieve System Object Property Values” on page 4-4

“Set System Object Property Values” on page 4-4

Create a New System Object
You must create a System object before using it. You can create the object at
the MATLAB command line or within a program file. Your command-line code
and programs can pass MATLAB variables into and out of System objects.

For general information about working with MATLAB objects, see
Object-Oriented Programming in the MATLAB user documentation.

Retrieve System Object Property Values
System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a Name-Value pair. You can display the list of
relevant property names and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property
is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handle>.<Name>.

Example
This example retrieves and displays the PeakPower property value for the
previously created Transmitter object:

H.PeakPower

Set System Object Property Values
You set the property values of a System object to model the desired algorithm.
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Note When you use Name-Value pair syntax, the object sets property values
in the order you list them. If you specify a dependent property value before its
parent property, an error or warning may occur.

Set Properties for a New System Object
To set a property when you first create the object, use Name-Value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

H1 = phased.Transmitter('PeakPower',6000)

where

• H1 is the handle to the object

• phased is the package name.

• Transmitter is the object name.

• CoefficientsSource is the property name.

PeakPower is the property name.

• 6000 is the property value.

Set Properties for an Existing System Object
To set a property after you have created an object, use either of the following
syntaxes:

H1.PeakPower = 6500

or

set(H1,'PeakPower',6500)

Use Value-Only Inputs
Some object properties have no useful default values or must be specified
every time you create an object. For these properties, you can specify only
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the value without specifying the corresponding property name. If you use
value-only inputs, those inputs must be in a specific order, which is the
same as the order in which the properties are displayed. Refer to the object
reference page for details. For example,

hURA = phased.URA([2 3],0.25);

specifies the Size property as [2 3] and the ElementSpacing property as
0.25.
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Process Data using System Objects

In this section...

“What are System Object Methods?” on page 4-7

“The Step Method” on page 4-7

“Common Methods” on page 4-9

“Advantages of Using Methods” on page 4-10

What are System Object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <method>(<handle>), such as step(H).

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 4-9.

Calculate the Effect of Propagating a Signal in Free Space
This example uses two different step methods. The first step method is
associated with the phased.LinearFMWaveform object and the second step
method is associated with the phased.Freespace object.

Construct a linear FM waveform with a pulse duration of 50 microseconds, a
sweep bandwidth of 100 kHz, an increasing instantaneous frequency, and a
pulse repetition frequency (PRF) of 10 kHz..

hFM = phased.LinearFMWaveform('SampleRate',1e6,...

4-7



4 System Objects

'PulseWidth',5e-5,'PRF',1e4,...
'SweepBandwidth',1e5,'SweepDirection','Up',...
'OutputFormat','Pulses','NumPulses',1);

Obtain the waveform using the step method. Note that the input to the step
method is a handle to a phased.LinearFMWaveform object.

Sig = step(hFM);

Construct a free space object with a propagation speed equal to the speed of
light, an operating frequency of 3 GHz, and a sample rate of 1 MHz. The free
space object is constructed to model one way propagation.

hFS = phased.FreeSpace(...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',3e9,'TwoWayPropagation',false,...
'SampleRate',1e6);

Calculate the effect on the waveform of one-way propagation in free space from
coordinates [0;0;0] to [500; 1e3; 20] and plot the results for comparison.

PropSig = step(hFS,Sig,[0; 0; 0],[500; 1e3; 20]);
% compare the original signal to the propagated waveform
t = unigrid(0,1/hFS.SampleRate,length(Sig)*1/hFS.SampleRate,'[)');
subplot(211)
plot(t,real(Sig)); title('Original Signal (real part)');
ylabel('Amplitude');
subplot(212)
plot(t,real(PropSig)); title('Propagated Signal (real part)');
xlabel('Seconds'); ylabel('Amplitude');
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Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

Method Description

step Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. See “Understand System Object Modes”
on page 4-12.

clone Creates another object with the same property values
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Method Description

isLocked Returns a logical value indicating whether the object
is locked. See “Understand System Object Modes” on
page 4-12.

reset Resets the internal states of the object to the initial
values for that object

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached
the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

info Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

getNumInputs Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method
on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

Advantages of Using Methods
System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
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avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.
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What are System Object Locking and Property Tunability?

In this section...

“Understand System Object Modes” on page 4-12

“Change Properties While Running System Objects” on page 4-13

“Change System Object Input Complexity or Dimensions” on page 4-13

Understand System Object Modes
System objects are in one of two modes: unlocked or locked. After you create
an object and until it starts processing data, that object is in unlocked mode.
You can change any of its properties as desired.

The object initializes and locks when it begins processing data. The typical
way in which an object becomes locked is when the step method is called on
that object. To determine if an object is locked, use the isLocked method. To
unlock an object, use the release method. When the object is locked, you
cannot change any of the following:

• Number of inputs or outputs

• Data type

• Dimensions of inputs or tunable properties, except for System objects that
support variable-size data, where the input size can vary. See “What Is
Variable-Size Data?” for more information.

• Value of any nontunable property

Several System objects do not allow changing the complexity of inputs from
real to complex. You can, however, change the input complexity from complex
to real without unlocking the object.

These restrictions allow the object to maintain states and allocate memory
appropriately.
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Change Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use a command of this form:

help phased.Transmitter.PeakPower

where

• phased is the package name.

• Transmitter is the object name.

• PeakPower is the property name.

For information on locked and unlocked modes, see “Understand System
Object Modes” on page 4-12.

Change System Object Input Complexity or
Dimensions
During simulations you can change an input’s complexity from complex to
real, but not from real to complex. You cannot change any input complexity
during code generation.

For objects that do not support variable-size input, if you change the input
dimensions while the object is in locked mode, the object produces a warning
and unlocks. The object then reinitializes the next time you call the step
method. See the object’s reference page for more information. You can change
the value of a tunable property and the input size without a warning or error
being produced. For all other changes at runtime, an error occurs.
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Find Help and Demos for System Objects
Refer to the following resources for more information about System objects.

• Package help – help phased, where phased is a product package name

• Object help – help phased.Transmitter, where Transmitter is the object
name

• Documentation reference pages for an object – doc phased.Transmitter

• Property help — help phased.Transmitter.PeakPower, where PeakPower
is the property name.

• Method help – help phased.Transmitter.step, where step is the method
name.

To view demos, go to the Help contents for the associated product.
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Overview of Basic Workflow
The scenario and code examples contained in “End-to-End Radar System”
on page 5-3 are intended as an introduction to the fundamental workflow
used in Phased Array System Toolbox software. The example is intentionally
simplified in order to familiarize you with the basic theme that extends
throughout the toolbox. You will find the core elements of this workflow in
many other examples.

The basic workflow consists of:

• Constructing objects that represent the physical components and
algorithms of your model. The objects have modifiable properties that
enable you to parameterize your model. For information about the object
properties, see the object reference page.

• Using the object’s step method to perform the action of your
parameterized object on inputs. The action of step is specific to each
algorithm. For example, the step method for the linear FM waveform,
phased.LinearFMWaveform, performs a different action than the step
method for the steering vector, phased.SteeringVector. The specific
action and syntax of each step method are documented on the reference
page. You can access the documentation for an object’s step method by
entering:

doc phased.ObjectName/step

at the MATLAB command prompt, or via the hyperlink in the Methods
section of the object’s reference page.
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End-to-End Radar System

In this section...

“Radar Scenario” on page 5-3

“Waveform” on page 5-3

“Antenna” on page 5-4

“Target Model” on page 5-4

“Antenna and Target Platforms” on page 5-4

“Modeling the Transmitter” on page 5-5

“Modeling Waveform Radiation and Collection” on page 5-6

“Modeling the Receiver” on page 5-6

“Modeling the Propagation Environment” on page 5-7

“Implementing the Basic Radar Model” on page 5-7

Radar Scenario
This example shows how to apply the basic toolbox workflow to the following
scenario: Assume you have a single isotropic antenna operating at 4 GHz.
Assume the antenna is located at the origin of your global coordinate system.
There is a target with a nonfluctuating radar cross section of 0.5 square meters
initially located at [7000; 5000; 0]. The target moves with a constant
velocity vector of [-15;-10;0]. Your antenna transmits ten rectangular
pulses with a duration of 1 microsecond at a pulse repetition frequency (PRF)
of 5 kHz. The pulses propagate to the target, reflect off the target, propagate
back to the antenna, and are collected by the antenna. The antenna operates
in a monostatic mode, receiving only when the transmitter is inactive.

Waveform
To build the waveform described in “Radar Scenario” on page 5-3, use
phased.RectangularWaveform and set the properties to the desired values.

hwav = phased.RectangularWaveform('PulseWidth',1e-6,...
'PRF',5e3,'OutputFormat','Pulses','NumPulses',1);
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See “Rectangular Pulse Waveforms” for more detailed examples on building
waveform models.

Antenna
To model the antenna described in “Radar Scenario” on page 5-3, use
phased.IsotropicAntennaElement. Set the operating frequency range of
the antenna to [1,10] GHz. The isotropic antenna radiates equal energy for
azimuth angles from –180 to 180 degees and elevation angles from –90 to
90 degrees.

hant = phased.IsotropicAntennaElement('FrequencyRange',...
[1e9 10e9]);

Target Model
To model the target described in “Radar Scenario” on page 5-3, use
phased.RadarTarget. The target has a nonfluctuating RCS of 0.5 square
meters and the waveform incident on the target has a carrier frequency of 4
GHz. The waveform reflecting off the target propagates at the speed of light.
Parameterize this information in defining your target.

htgt = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);

Antenna and Target Platforms
To model the location and movement of the antenna and target in “Radar
Scenario” on page 5-3, use phased.Platform.

The antenna is stationary in this scenario and is located at the origin of the
global coordinate system. The target is initially located at [7000; 5000; 0]
and moves with a constant velocity vector of [-15;-10;0].

htxplat = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0],'OrientationAxes',[1 0 0;0 1 0;0 0 1]);

htgtplat = phased.Platform('InitialPosition',[7000; 5000; 0],...
'Velocity',[-15;-10;0]);

For definitions and conventions regarding global and local coordinates, see
“Global and Local Coordinate Systems”.

5-4



End-to-End Radar System

Use rangeangle to determine the range and angle between the antenna and
the target.

[tgtrng,tgtang] = rangeangle(htgtplat.InitialPosition,...
htxplat.InitialPosition);

See “Motion Modeling in Phased Array Systems” for more details on modeling
motion.

Modeling the Transmitter
To model the transmitter specifications, use phased.Transmitter. A
key parameter in modeling a transmitter is the peak transmit power. To
determine the peak transmit power, assume that the desired probability of
detection is 0.9 and the maximum tolerable false-alarm probability is 10–6.
Assume that the ten rectangular pulses are noncoherently integrated at the
receiver. You can use albersheim to determine the required signal-to-noise
ratio (SNR).

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);

The required SNR is approximately 5 dB. Assume you want to set the peak
transmit power in order to achieve the required SNR for your target at a
range of up to 15 kM. Assume that the transmitter has a 20 dB gain. You can
use radareqpow to determine the required peak transmit power.

maxrange = 1.5e4;
lambda = physconst('LightSpeed')/4e9;
tau = hwav.PulseWidth;
Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);

The required peak transmit power is approximately 45 kilowatts. To
be conservative, use a peak power of 50 kilowatts in modeling your
transmitter. To maintain a constant phase in the pulse waveforms, set
the CoherentOnTransmit property to true. Because you are operating the
transmitter in a monostatic (transmit-receive) mode, set the InUseOutputPort
property to true to keep a record of the transmitter status.
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htx = phased.Transmitter('PeakPower',50e3,'Gain',20,...
'LossFactor',0,'InUseOutputPort',true,...
'CoherentOnTransmit',true);

See “Transmitter” for more examples on modeling transmitters and “Radar
Equation” for examples involving the radar equation.

Modeling Waveform Radiation and Collection
To model waveform radiation from the array, use phased.Radiator. To
model narrowband signal collection at the array, use phased.Collector. For
wideband signal collection, use phased.WidebandCollector.

In this example, the pulse satisfies the narrowband assumption around
the carrier frequency of 4 GHz. For the value of the Sensor property, use
the handle for the isotropic antenna. In phased.Collector, setting the
Wavefront property to 'Plane' assumes the waveform incident on the
antenna is a plane wave.

hrad = phased.Radiator('Sensor',hant,...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hant,...
'PropagationSpeed',physconst('LightSpeed'),...
'Wavefront','Plane','OperatingFrequency',4e9);

Modeling the Receiver
To model the receiver in “Radar Scenario” on page 5-3, use
phased.ReceiverPreamp. In the receiver, you specify the noise figure and
reference temperature, which are key contributors to the internal noise of
your system. In this example, set the noise figure to 2 dB and the reference
temperature to 290 degrees kelvin. Seed the random number generator for
reproducible results.

hrec = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
'ReferenceTemperature',290,'SampleRate',1e6,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

See “Receiver Preamp” for more details.
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Modeling the Propagation Environment
To model the propagation environment in “Radar Scenario” on page 5-3, use
phased.FreeSpace. You can model one-way and two-propagation by setting
the TwoWayPropagation property. In this example, set this property to false
to model one-way propagation.

hspace = phased.FreeSpace(...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',4e9,'TwoWayPropagation',false,...
'SampleRate',1e6);

See “Free Space Path Loss” for more details.

Implementing the Basic Radar Model
Having parameterized all the necessary components for the model outlined in
“Radar Scenario” on page 5-3, you are ready to generate the pulses, propagate
the pulses to and from the target, and collect the echoes.

The following code prepares for the main simulation loop.

% Time step between pulses
T = 1/hwav.PRF;
% Get antenna position
txpos = htxplat.InitialPosition;
% Allocate array for received echoes
rxsig = zeros(hwav.SampleRate*T,numpulses);

You can execute the main simulation loop with the following code:

for n = 1:numpulses
% Update the target position
tgtpos = step(htgtplat,T);
% Get the range and angle to the target
[tgtrng,tgtang] = rangeangle(tgtpos,txpos);
% Generate the pulse
sig = step(hwav);
% Transmit the pulse. Output transmitter status
[sig,txstatus] = step(htx,sig);
% Radiate the pulse toward the target
sig = step(hrad,sig,tgtang);
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% Propagate the pulse to the target in free space
sig = step(hspace,sig,txpos,tgtpos);
% Reflect the pulse off the target
sig = step(htgt,sig);
% Propagate the echo to the antenna in free space
sig = step(hspace,sig,tgtpos,txpos);
% Collect the echo from the incident angle at the antenna
sig = step(hcol,sig,tgtang);
% Receive the echo at the antenna when not transmitting
rxsig(:,n) = step(hrec,sig,~txstatus);

end

Noncoherently integrate the received echoes, create a vector of range gates,
and plot the result. The red vertical line on the plot marks the range of the
target.

rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/hrec.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates,rxsig); hold on;
xlabel('Meters'); ylabel('Power');
ylim = get(gca,'YLim');
plot([tgtrng,tgtrng],[0 ylim(2)],'r');
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